UNCLASSIFIED # AD 295 701 Reproduced by the ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. CATALOGED BY ASTIA AS AD MG 295701 STRESSES IN ECCENTRIC STEPWISE DISCONTINUOUS REINFORCING RINGS WITH TRANSITION SECTION by Arnold Allentuch and Joseph Kempner ## POLYTECHNIC INSTITUTE OF BROOKLYN DEPARTMENT of AEROSPACE ENGINEERING and APPLIED MECHANICS DECEMBER 1962 PIBAL REPORT NO. 651 # STRESSES IN ECCENTRIC STEPWISE DISCONTINUOUS REINFORCING RINGS WITH TRANSITION SECTION by Arnold Allentuch and Joseph Kempner Polytechnic Institute of Brooklyn Department of Aerospace Engineering and Applied Mechanics December 1962 PIBAL Report No. 651 #### **ABSTRACT** The stress distribution in a ring of non-uniform cross section under the action of a uniform radial line load is obtained. The ring is fabricated in three segments; one segment whose cross sectional area varies according to a power function and connects two uniform segments. Several sets of parameters are chosen for numerical calculations. Within these sets only the length of the transition section changes. Thus, an appraisal of the importance of the transition section in reducing the maximum stress is made. The stress distribution for each length of the transition section chosen is plotted. The maximum bending stresses are reduced, because of the transition section, by as much as 63%. The corresponding length of the transition section is approximately 60° . ### SECTION 1. LIST OF SYMBOLS | a | Outer (inner) uniform radius, Fig. 1 | |--|--| | a _h | Centroidal radius of upper uniform section, Fig. 1 | | a f | Centroidal radius of transition section, Fig. 1 | | ^a H | Centroidal radius of lower uniform section, Fig. 1 | | a
o | Non-dimensional load parameter, Eq. (6) | | A _h , A _H | Cross-sectional areas of uniform sections | | A _f | Cross-sectional area of transition section | | c ₁ c ₄ | Dimensionless constants, Eq. (12) | | $\mathtt{c}_{\mathtt{l}_{\mathbf{f}}}$ | Dimensionless constant, Eq. (12) | | c ₃ | Dimensionless constant, Eq. (12) | | E | Young's modulus | | h, H | Height of two uniform sections of ring, Fig. 1 | | h _f | Height of transition section, Fig. 1 | | ^I 1*** ^I 5 | Integrals, Eq. (37) to (41) | | I _f | Moment of inertia of transition cross section | - I_h , I_H Constant moments of inertia of uniform sections - Mon-dimensional bending moment in lighter uniform section, Eq. (1), Fig. 2 - Mon-dimensional bending moment in transition section, Eq. (2), Fig. 3 - M_H Non-dimensional bending moment in heavier uniform section, Eq. (3), Fig. 4 - Mon-dimensional bending moment at $\varphi = 0$, Eq. (5), Fig. 2 - P Radial line load distribution on ring - p Pressure external to cylinder - t Non-dimensional hoop force, Eq. (9), Fig. 2 - Non-dimensional hoop force at $\varphi = 0$, Eq. (5), Fig. 2 - u Non-dimensional strain energy, Eq. (10) - Ratio of centroidal to uniform outer (inner) radius for lighter uniform section, Eq. (7) - γ Ratio of centroidal to uniform outer (inner) radius for transition section, Eq. (7) - Ratio of centroidal to uniform outer (inner) radius for heavier uniform section, Eq. (7) - $\phi_{\mathbf{f}}$ Angle locating beginning of transition section, Fig. 1 - ϕ_0 Angle locating end of transition section, Fig. 1 - φ Angular coordinate measured from crown, Fig. 2 - Non-dimensional constant, Eq. (28) - Δ Non-dimensional constant, Eq. (31) - $\left(\sigma_{\phi}\right)_{b}$ Circumferential bending stress - σ_m Circumferential membrane stress - v Poisson's ratio #### 2. INTRODUCTION The general interaction problem of finding the ring and shell stresses in hydrostatically loaded shells, reinforced by periodically spaced frames, has been analyzed in detail in a sequence of PIBAL reports. The initial problems were concerned with uniform rings. In Refs. [1]* and [2] the first solutions of the problem of non-uniform rings mounted on pressurized cylinders was considered. In both of these reports the cross sectional area of the ring was assumed to vary smoothly. The problem of a hydrostatically loaded shell reinforced by non-uniform stepwise discontinuous rings was investigated in Refs. [3], [4], and [5]. In order better to distinguish between these three solutions, they are henceforth referred to as problems 1, 2, and 3, respectively. Problems 1, 2 and 3 differ only in the geometric configuration of the reinforcing rings. The rings in problem 1 consisted of two uniform sections having the same mean radius and subtending equal sector angles. Thus the effect of eccentricity of the median line of the ring was not considered. $ilde{\ \ }$ Numbers in square brackets refer to the Bibliography. In problem 2 the rings were again fabricated of two uniform sections subtending equal sector angles but having <u>different</u> mean radii. The effect of eccentricity was, therefore, included and was found to be significant in the evaluation of the ring bending stress. Several approximations to problem 2 were included and evaluated [4]. Finally, the description of the rings in problem 3 contained one additional parameter. These rings conisted of two uniform sections having different mean radii, but the two sections no longer subtended equal sector angles. Thus, the location of the discontinuity, i.e., the junction of the two uniform sections, was a parameter. In both problems 2 and 3 the maximum bending stress in the ring at the discontinuity was roughly one third of the corresponding membrane stress. In order to investigate the reduction of the bending stress in the ring due to a smoothly varying transition section between the two uniform sections, the interaction problems 2 and 3 have been extended. Let us refer to this as problem 4. As mentioned previously, several approximations to problem 2 were presented in Ref. [4]. It was concluded that, within the limits of the parameter ranges chosen, these approximations were also valid in problem 3 where the two sections subtended different central angles. Let us briefly analyze the basis for such a conclusion. In problems 1, 2, and 3 the interaction load, considered as the unknown of the problem, was expressed as a Fourier series whose coefficients were to be determined. In problem 1 the eccentric effect of different mean radii was absent so that the ring bending stress was quite low, i.e., a second order effect. In problem 2, where eccentricity was present, the bending stress was a first order effect, and, in fact, was found to depend most heavily on the constant term of the radial component of the interaction load Fourier series. With this in mind the problem was solved by taking only this constant term into consideration. In effect, the interaction load was assumed to be constant and radial. In Ref. [4] this approximation to problem 2, within the limit of the parameter ranges chosen, was found to be excellent. Further investigation indicated that the approximation described could be further simplified. This was accomplished by solving for the uniform interaction load between an infinitely long hydrostatically loaded cylinder and a single uniform (based on a numerical average of the two cross sectional areas) reinforcing ring. This proved to be a reasonable approximation, within the limits of the chosen parameters, to the constant term of the interaction load for problem 4. One therefore concludes that problem 4 can be reduced to finding the stresses in a uniformly loaded ring composed of two uniform sections and connected by a smoothly varying transition section. The load (radial) on this ring is obtained from the solution of the interaction problem of a single ring reinforcing an infinitely long hydrostatically loaded shell. In particular, the load may be obtained from Eq. (111), page 62 of Ref. [4]. In the numerical computations that follow, the length of the transition section is the only parameter allowed to change, so that the effect of the transition section can be readily ascertained. #### 3. THE BENDING MOMENT IN THE RING The elements of the ring shown in Figs. 2, 3 and 4 are in static equilibrium. From a consideration of moment equilibrium, the results are $$m_{h} = m_{o} - t_{o}\alpha(1 - \cos \phi) - \alpha a_{o}(1 - \cos \phi)$$ $$0 \le \phi \le \phi_{f}$$ (1) $$m_{f} = m_{o} - t_{o}(\alpha - \gamma \cos \phi) - \gamma a_{o}(1 - \cos \phi)$$ $$\phi_{f} \leq \phi \leq \phi_{o}$$ (2) $$m_{H} = m_{o} - t_{o}(\alpha - \beta \cos \phi) - \beta a_{o}(1 - \cos \phi)$$ $$\phi_{o} \leq \phi \leq \pi$$ (3) where m_h , m_f , and m_H , are bending moments non-dimensionalized with respect to Young's Modulus E and to the constant radius a (see Figs. 1 to 4) as follows: $$m_{h} = M_{h}/Ea^{3}$$ $$m_{f} = M_{f}/Ea^{3}$$ $$m_{H} = M_{H}/Ea^{3}$$ (4) The quantities $m_{_{\mbox{\scriptsize 0}}}$ and $t_{_{\mbox{\scriptsize 0}}}$ are the non-dimensional moment and force, respectively, at ϕ = 0 . $$m_o = M_o/Ea^3$$ $$t_o = T_o/Ea^2$$ (5) ${\tt a}_{\tt o}$ is a non-dimensionalized measure of the radial line load on the ring P $$a_{o} = \frac{p}{Fa} \tag{6}$$ Finally, the following non-dimensional quantities in Eqs. (1) to (3) are defined in the following manner (see Fig. 1): $$\alpha =
a_h/a$$ $$\beta = a_H/a$$ $$\gamma = a_f/a$$ (7) where a_h , a_f , and a_H are the centroidal radii of the three sections of the ring. While α and β are constants, γ is a function of the angular coordinate ϕ . The equations of force equilibrium give the hoop force as a function of the external load $$t = t_0 \cos \varphi - a_0(1 - \cos \varphi) \tag{8}$$ where t is the non-dimensionalized hoop force (see Fig. 1) $$t = T/Ea^2 \tag{9}$$ The quantities to and mo are unknown. It is convenient at this time to determine these unknowns by Castigliano's theorem. The requirement is that $\frac{\partial u}{\partial t_o}=0$ and $\frac{\partial u}{\partial m_o}=0$, where u is a non-dimensionalized strain energy given by $$u = \frac{U}{r_0^3} . \tag{10}$$ If \mathbf{a}_{m} refers to the radius of the median curve of the ring, I the moment of inertia of across section, and A the area of a cross section, the strain energy of the ring is $$u = \int_{0}^{\pi} \frac{a_{m}}{a} \frac{a^{4}}{I} \left(\frac{M}{Ea^{3}}\right)^{2} d\phi + \int_{0}^{\pi} \frac{1}{a_{m}/a} \frac{a^{2}}{A} \left(\frac{t}{Ea^{2}} \frac{a_{m}}{a} - \frac{M}{Ea^{3}}\right)^{2} d\phi$$ (11) At this point let us define the following non-dimensional parameters: $$C_1 = a^4/I_h$$ $C_{1_f} = a^4/I_f$ $C_2 = a^4/I_H$ (12) $C_3 = a^2/A_h$ $C_{3_f} = a^2/A_f$ $C_4 = a^2/A_H$ where the subscripts h, f, and H refer to those sections of the ring having mean radii a_h , a_f , and a_H (see Fig. 1), respectively. Equation (11) may be written in a manner suitable to this particular problem. Incorporating the definitions (7) and (12) (see Fig. 1 for definition of the position angles ϕ_f and ϕ_o), the strain energy may be written as follows: $$u = \alpha C_{1} \int_{0}^{\phi_{f}} m_{h}^{2} d\phi + \int_{\phi_{f}}^{\phi_{o}} \gamma C_{1} m_{f}^{2} d\phi + \beta C_{2} \int_{\phi_{o}}^{\pi} m_{H}^{2} d\phi$$ $$+ \frac{C_{3}}{\alpha} \int_{0}^{\phi_{f}} (t\alpha - m_{h})^{2} d\phi + \int_{\phi_{f}}^{\phi_{o}} \frac{C_{3}}{\gamma} (t\alpha - m_{f})^{2} d\phi + \frac{C_{4}}{\beta} \int_{\phi_{o}}^{\pi} (t\alpha - m_{H})^{2} d\phi$$ (13) The quantities (t α - m $_h$), (t α - m $_f$), and (t α - m $_H$) can be found from Eqs. (1), (2), (3), and (8) as $$ta - m_h = ta - m_f = ta - m_H = t_o a - m_o$$ (14) From Eqs. (1), (2), (3), and (14) the following expressions can be readily ascertained: $$\frac{\partial m_h}{\partial t_0} = -\alpha(1 - \cos \varphi) \tag{15}$$ $$\frac{\partial m_f}{\partial t_0} = -\alpha + \gamma \cos \varphi \tag{16}$$ $$\frac{\partial m_{H}}{\partial t_{o}} = -\alpha + \beta \cos \varphi \tag{17}$$ $$\frac{\partial m_h}{\partial m_Q} = 1 \tag{18}$$ $$\frac{\partial m_{\mathbf{f}}}{\partial m_{\mathbf{Q}}} = 1 \tag{19}$$ $$\frac{\partial m_{H}}{\partial m_{Q}} = 1 \tag{20}$$ $$\frac{\partial (t\alpha - m_h)}{\partial t_o} = \frac{\partial (t\alpha - m_f)}{\partial t_o} = \frac{\partial (t\alpha - m_H)}{\partial t_o} = \alpha$$ (21) $$\frac{\partial(t\alpha - m_H)}{\partial m_O} = \frac{\partial(t\alpha - m_f)}{\partial m_O} = \frac{\partial(t\alpha - m_H)}{\partial m_O} = -1$$ (22) Taking Eqs. (15) to (22) into account, application of the requirement $\partial u/\partial m_0 = 0$ to Eq. (13) yields $$\alpha C_{1} \int_{0}^{\phi_{f}} m_{h} d\phi + \int_{\phi_{f}}^{\phi_{o}} \gamma C_{1_{f}} m_{f} d\phi + \beta C_{2} \int_{\phi_{o}}^{\pi} m_{H} d\phi$$ $$-\frac{C_{3}}{\alpha} (t_{o}\alpha - m_{o})\phi_{f} - (t_{o} - m_{o}) \int_{\phi_{f}}^{\phi_{o}} \frac{C_{3_{f}}}{\gamma} d\phi \qquad (23)$$ $$-\frac{C_{4}}{\beta} (t_{o}\alpha - m_{o})(\pi - \phi_{o}) = 0$$ and application of the requirement $\partial u/\partial t_0$ yields $$-\alpha^{2}C_{1}\int_{0}^{\phi_{f}}m_{h}(1-\cos\phi)\ d\phi - \int_{\phi_{f}}^{\phi_{o}}\gamma C_{1_{f}}m_{f}(\alpha-\gamma\cos\phi)\ d\phi$$ $$-\beta C_{2}\int_{\phi_{o}}^{\pi}m_{H}(\alpha-\beta\cos\phi)\ d\phi + C_{3}(t_{o}\alpha-m_{o})\ \phi_{f}^{**}$$ $$+\alpha(t_{o}\alpha-m_{o})\int_{\phi_{f}}^{\phi_{o}}\frac{C_{3_{f}}}{\gamma}\ d\phi + \frac{\alpha}{\beta}C_{4}(t_{o}\alpha-m_{o})(\pi-\phi_{o}) = 0$$ (24) If Eq. (23) is multiplied by α and added to (24), the following simplification results: $$\alpha^{2}C_{1} \int_{0}^{\phi_{f}} m_{h} \cos \phi \ d\phi + \int_{\phi_{f}}^{\phi_{o}} \gamma^{2}C_{1} m_{f} \cos \phi \ d\phi$$ $$+ \beta^{2}C_{2} \int_{\phi_{o}}^{\pi} m_{H} \cos \phi \ d\phi = 0$$ (25) Equations (23) and (25) may be integrated by substituting the values of m_h , m_f , and m_H from Eqs. (1), (2), and (3). Of course, any integral involving quantities with the subscript f cannot be integrated until a specific function is assigned which governs the geometry of the transition section. We leave this to a later section. The results of integrating Eqs. (23) and (25) at this point wherever possible are given in the following expressions: $$\begin{split} & \left[\left(\phi_{\mathbf{f}} \alpha C_{1} + \delta \beta C_{2} \right) + \left(\phi_{\mathbf{f}} \frac{C_{3}}{\alpha} + \delta \frac{C_{4}}{\beta} \right) + \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \left(\gamma C_{1_{\mathbf{f}}} + \frac{C_{3_{\mathbf{f}}}}{\gamma} \right) \, d\phi \right] m_{\mathbf{o}} \\ & + \left[-\alpha \left(\phi_{\mathbf{f}} \alpha C_{1} + \delta \beta C_{2} \right) + \left(\alpha^{2} C_{1} \sin \phi_{\mathbf{f}} - \beta^{2} C_{2} \sin \phi_{\mathbf{o}} \right) - \alpha \left(\phi_{\mathbf{f}} \frac{C_{3}}{\alpha} + \delta \frac{C_{4}}{\beta} \right) \right. \\ & - \alpha \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \left(\gamma C_{1_{\mathbf{f}}} + \frac{C_{3_{\mathbf{f}}}}{\gamma} \right) \, d\phi + \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{2} C_{1_{\mathbf{f}}} \cos \phi \, d\phi \right] t_{\mathbf{o}} \\ & = \left[\left(\alpha^{2} \phi_{\mathbf{f}} C_{1} + \delta \beta^{2} C_{2} \right) - \left(\alpha^{2} C_{1} \sin \phi_{\mathbf{f}} - \beta^{2} C_{2} \sin \phi_{\mathbf{o}} \right) \right. \\ & + \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{2} C_{1_{\mathbf{f}}} \left(1 - \cos \phi \right) \, d\phi \right] a_{\mathbf{o}} \end{split}$$ $$\begin{split} & \left[\left(\alpha^2 C_1 \sin \phi_f - \beta^2 C_2 \sin \phi_o \right) + \int_{\phi_f}^{\phi_o} \gamma^2 C_{1_f} \cos \phi d\phi \right]_{\phi_o} \\ & + \left[-\alpha (\alpha^2 C_1 \sin \phi_f - \beta^2 C_2 \sin \phi_o) + \frac{1}{2} (\alpha^3 \phi_f C_1 + \beta^3 \delta C_2) \right] \\ & + \frac{1}{4} (\alpha^3 C_1 \sin 2\phi_f - \beta^3 C_2 \sin 2\phi_o) - \alpha \int_{\phi_f}^{\phi_o} \gamma^2 C_{1_f} \cos \phi d\phi \\ & + \int_{\phi_f}^{\phi_o} \gamma^3 C_{1_f} \cos^2 \phi d\phi \right]_{\phi_o} = \left[\left(\alpha^3 C_1 \sin \phi_f - \beta^3 C_2 \sin \phi_o \right) \right. \\ & \left. - \frac{1}{2} (\alpha^3 \phi_f + \beta^3 \delta C_2) \right] \\ & - \frac{1}{4} (\alpha^3 C_1 \sin 2\phi_f - \beta^3 C_2 \sin 2\phi_o) + \int_{\phi_f}^{\phi_o} \gamma^3 C_{1_f} \cos \phi d\phi \\ & - \int_{\phi_f}^{\phi_o} \gamma^3 C_{1_f} \cos^2 \phi d\phi \right]_{\phi_o} \end{split}$$ where $$\delta = \pi (1 - \frac{\varphi_0}{\pi}) \tag{28}$$ The solutions of the simultaneous equations (26) and (27) are $$\begin{split} \mathbf{m}_{o} &= \frac{1}{\Delta} \left\{ -\delta \beta (\alpha - \beta) C_{2} \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{3} C_{1_{\mathbf{f}}} \cos^{2} \phi d \phi \right. \\ &+ \alpha^{2} \beta (\alpha - \beta) (\alpha \delta \sin \phi_{\mathbf{f}} + \beta \phi_{\mathbf{f}} \sin \phi_{\mathbf{o}}) C_{1} C_{2} \\ &- \frac{\delta}{2} \beta (\alpha - \beta) (\alpha^{3} \phi_{\mathbf{f}} C_{1} + \beta^{3} \delta C_{2}) C_{2} \\ &- \frac{\delta}{4} \beta (\alpha - \beta) (\alpha^{3} C_{1} \sin 2 \phi_{\mathbf{f}} - \beta^{3} C_{2} \sin 2 \phi_{\mathbf{o}}) C_{2} \\ &- \beta^{2} (\alpha - \beta) (\alpha^{2} C_{1} \sin \phi_{\mathbf{f}} - \beta^{2} C_{2} \sin \phi_{\mathbf{o}}) C_{2} \sin \phi_{\mathbf{o}} \\ &+ \left[-\alpha (\alpha^{2} \phi_{\mathbf{f}} C_{1} + \beta^{2} \delta C_{2}) + \alpha (\alpha^{2} C_{1} \sin \phi_{\mathbf{f}} - \beta^{2} C_{2} \sin \phi_{\mathbf{o}}) \right. \\ &- \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{3} C_{1_{\mathbf{f}}} \cos \phi d \phi - \alpha \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{2} C_{1_{\mathbf{f}}} (1 - \cos \phi) d \phi \\ &- \beta^{2} (\alpha - \beta) C_{2} \sin \phi_{\mathbf{o}} \right] \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{2} C_{1_{\mathbf{f}}} \cos \phi d \phi \\ &+ \left[-\alpha (\alpha^{2} C_{1} \sin \phi_{\mathbf{f}} - \beta^{2} C_{2} \sin \phi_{\mathbf{o}}) + \frac{1}{2} (\alpha^{3} \phi_{\mathbf{f}} C_{1} + \beta^{3} \delta C_{2}) \right] \end{split}$$ $$\begin{split} &+\frac{1}{4}\left(\alpha^{3}C_{1} \sin 2\varphi_{f}-\beta^{3}C_{2} \sin 2\varphi_{o}\right) \\ &+\int_{\phi_{f}}^{\phi_{o}} \gamma^{3}C_{1_{f}} \cos^{2}\varphi d\varphi \Big] \int_{\phi_{f}}^{\phi_{o}} \gamma^{2}C_{1_{f}} d\varphi \\ &+\left[-\alpha(\phi_{f} \frac{C_{3}}{\alpha}+\delta\frac{C_{4}}{\beta})-\alpha\int_{\phi_{f}}^{\phi_{o}} (\gamma C_{1_{f}}+\frac{C_{3_{f}}}{\gamma}) d\varphi \Big] \int_{\phi_{f}}^{\phi_{o}} \gamma^{3}C_{1_{f}} \cos^{2}\varphi d\varphi \\ &+\left[\alpha\int_{\phi_{f}}^{\phi_{o}} \gamma^{3}C_{1_{f}} \cos\varphi d\varphi+\alpha(\alpha^{3}C_{1} \sin\varphi_{f}-\beta^{3}C_{2} \sin\varphi_{o})\right. \\ &-\frac{\alpha}{2}(\alpha^{3}\phi_{f}C_{1}+\beta^{3}\delta C_{2})-\frac{\alpha}{4}(\alpha^{3}C_{1} \sin2\varphi_{f} \\ &-\beta^{3}C_{2} \sin2\varphi_{o})\right] \int_{\phi_{f}}^{\phi_{o}} (\gamma C_{1_{f}}+\frac{C_{3_{f}}}{\gamma}) d\varphi \\ &+\alpha(\phi_{f} \frac{C_{3}}{\alpha}+\delta\frac{C_{4}}{\beta})(\alpha^{3}C_{1} \sin\varphi_{f}-\beta^{3}C_{2} \sin\varphi_{o}) \\ &-\frac{\alpha}{2}\left(\phi_{f} \frac{C_{3}}{\alpha}+\delta\frac{C_{4}}{\beta}\right)(\alpha^{3}\varphi_{f}C_{1}+\beta^{3}\delta C_{2}) \\ &-\frac{\alpha}{4}\left(\phi_{f} \frac{C_{3}}{\alpha}+\delta\frac{C_{4}}{\beta}\right)(\alpha^{3}C_{1} \sin2\varphi_{f}-\beta^{3}C_{2} \sin2\varphi_{o}) \\
&+\left[\alpha(\phi_{f} \alpha C_{1}+\delta\beta C_{2})-(\alpha^{2}C_{1} \sin\varphi_{f}-\beta^{2}C_{2} \sin\varphi_{o})\right. \\ &+\alpha(\phi_{f} \frac{C_{3}}{\alpha}+\delta\frac{C_{4}}{\beta})\right]\int_{\phi_{f}}^{\phi_{o}} \gamma^{3}C_{1_{f}} \cos\varphi d\varphi \Big\} a_{o} \end{split} \tag{29}$$ and $$\begin{split} \mathbf{t}_{o} &= - \ \mathbf{a}_{o} + \frac{1}{\Delta} \left\{ \alpha \beta (\alpha \delta \ \sin \ \phi_{f} + \beta \phi_{f} \ \sin \ \phi_{o}) (\alpha - \beta) C_{1} C_{2} \right. \\ &+ \left. (\phi_{f} \frac{C_{3}}{\alpha} + \delta \frac{C_{4}}{\beta}) (\alpha^{3} C_{1} \sin \ \phi_{f} - \beta^{3} C_{2} \sin \ \phi_{o}) \right. \\ &- \left[- (\alpha^{3} C_{1} \sin \ \phi_{f} - \beta^{3} C_{2} \sin \ \phi_{o}) \right. \\ &- \left. \int_{\phi_{f}}^{\phi_{o}} \gamma^{2} C_{1} \cos \ \phi d\phi \right] \int_{\phi_{f}}^{\phi_{o}} (\gamma C_{1} + \frac{C_{3}_{f}}{\gamma}) d\phi \\ &- (\alpha^{2} \phi_{f} C_{1} + \delta \beta^{2} C_{2}) \int_{\phi_{f}}^{\phi_{o}} \gamma^{2} C_{1} \cos \ \phi d\phi \\ &+ (\phi_{f} \alpha C_{1} + \delta \beta C_{2} + \phi_{f} \frac{C_{3}}{\alpha} + \delta \frac{C_{4}}{\beta}) \int_{\phi_{f}}^{\phi_{o}} \gamma^{3} C_{1} \cos \ \phi \ d\phi \right\} a_{o} \quad (30) \end{split}$$ where $$\begin{split} & \Delta = \frac{1}{2} \left(\alpha^{3} \varphi_{\mathbf{f}}^{C} C_{1} + \beta^{3} \delta C_{2} \right) \left(\varphi_{\mathbf{f}}^{\alpha} C_{1} + \delta \beta C_{2} + \varphi_{\mathbf{f}} \frac{C_{3}}{\alpha} + \delta \frac{C_{4}}{\beta} \right) \\ & + \frac{1}{4} \left(\alpha^{3} C_{1} \sin 2 \varphi_{\mathbf{f}} - \beta^{3} C_{2} \sin 2 \varphi_{\mathbf{o}} \right) \left(\varphi_{\mathbf{f}}^{\alpha} C_{1} + \delta \beta C_{2} + \varphi_{\mathbf{f}} \frac{C_{3}}{\alpha} + \delta \frac{C_{4}}{\beta} \right) \\ & - \left(\alpha^{2} C_{1} \sin \varphi_{\mathbf{f}} - \beta^{2} C_{2} \sin \varphi_{\mathbf{o}} \right)^{2} \\ & + \left[\frac{1}{2} (\alpha^{3} \varphi_{\mathbf{f}}^{C} C_{1} + \beta^{3} \delta C_{2}) + \frac{1}{4} (\alpha^{3} C_{1} \sin 2 \varphi_{\mathbf{f}} - \beta^{3} C_{2} \sin 2 \varphi_{\mathbf{o}} \right) \end{split}$$ $$+ \int_{\phi_{f}}^{\phi_{o}} \gamma^{2} C_{1_{f}} \cos^{2} \phi \ d\phi] \int_{\phi_{f}}^{\phi_{o}} (\gamma C_{1_{f}} + \frac{C_{3_{f}}}{\gamma}) \ d\phi$$ $$- 2(\alpha^{2} C_{1_{g}} \sin \phi_{f} - \beta^{2} C_{2_{g}} \sin \phi_{o}) \int_{\phi_{f}}^{\phi_{o}} \gamma^{2} C_{1_{f}} \cos \phi d\phi$$ $$- [\int_{\phi_{f}}^{\phi_{o}} \gamma^{2} C_{1_{f}} \cos \phi d\phi]^{2}$$ (31) By combining Eqs. (29), (30), and (31) with Eqs. (1), (2), and (3) the expression for m_h , m_f , m_H as a function of a_o can be stated. The writing of these expressions is simplified if we let $$\begin{split} \kappa_{1} &= \{ \frac{\beta}{\Delta} \; (\alpha - \beta) C_{2} [-\delta \int_{\phi_{f}}^{\phi_{o}} \; \gamma^{3} C_{1_{f}} \; \cos^{2} \phi d \phi \\ &- \frac{\delta}{2} \; (\alpha^{3} \phi_{f} C_{1} \; + \; \beta^{3} \delta C_{2}) \; - \; \beta \; \sin \; \phi_{o} \int_{\phi_{f}}^{\phi_{o}} \; \gamma^{2} C_{1_{f}} \; \cos \; \phi d \phi \\ &- \frac{\delta}{4} \; (\alpha^{3} C_{1} \; \sin \; 2 \phi_{f} \; - \; \beta^{3} C_{2} \; \sin \; 2 \phi_{o}) \\ &- \; \beta (\alpha^{2} C_{1} \; \sin \; \phi_{f} \; - \; \beta^{2} C_{2} \; \sin \; \phi_{o}) \; \sin \; \phi_{o}] \\ &+ \frac{1}{\Delta} \; \left[\alpha (\alpha^{2} C_{1} \; \sin \; \phi_{f} \; - \; \beta^{2} C_{2} \; \sin \; \phi_{o}) \right. \\ &+ \; \alpha \; \int_{\phi_{f}}^{\phi_{o}} \; \gamma^{2} C_{1_{f}} \; \cos \; \phi d \phi \; - \; \int_{\phi_{f}}^{\phi_{o}} \; \gamma^{3} C_{1_{f}} \; \cos \; \phi d \phi \right] \; \int_{\phi_{f}}^{\phi_{o}} \; \gamma^{2} C_{1_{f}} \; \cos \; \phi d \phi \\ &+ \frac{1}{\Delta} \; \left[\frac{1}{2} \; (\alpha^{3} \phi_{f} C_{1} \; + \; \beta^{3} \delta C_{2}) \; + \; \frac{1}{4} \; (\alpha^{3} C_{1} \; \sin \; 2 \phi_{f} \; - \; \beta^{3} C_{2} \; \sin \; 2 \phi_{o}) \right] \end{split}$$ $$\begin{split} &+\int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{3} c_{1_{\mathbf{f}}} \cos^{2}_{\phi} d_{\phi}] \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{2} c_{1_{\mathbf{f}}} d_{\phi} \\ &+\frac{\alpha}{\Delta} \left[\left(\phi_{\mathbf{f}} \frac{c_{3}}{\alpha} + \delta \frac{c_{4}}{\beta} \right) + \int (\gamma c_{1_{\mathbf{f}}} + \frac{c_{3_{\mathbf{f}}}}{\gamma}) d_{\phi} \right] \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{3} c_{1_{\mathbf{f}}} \cos^{2}_{\phi} d_{\phi} \\ &-\frac{\alpha}{2\Delta} \left[\left(\alpha^{3} \phi_{\mathbf{f}} c_{1} + \beta^{3} \delta c_{2} \right) + \frac{1}{2} \left(\alpha^{3} c_{1} \sin^{2}_{\phi} c_{\mathbf{f}} \right) \right] \\ &-\beta^{3} c_{2} \sin^{2}_{\phi_{\mathbf{o}}} \right] \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \left(\gamma c_{1_{\mathbf{f}}} + \frac{c_{3_{\mathbf{f}}}}{\gamma} \right) d_{\phi} \\ &-\frac{\alpha}{2\Delta} \left[\left(\alpha^{3} \phi_{\mathbf{f}} c_{1} + \beta^{3} \delta c_{2} \right) + \frac{1}{2} \left(\alpha^{3} c_{1} \sin^{2}_{\phi} c_{\mathbf{f}} \right) \right] \\ &-\frac{\alpha}{2\Delta} \left[\left(\alpha^{3} \phi_{\mathbf{f}} c_{1} + \beta^{3} \delta c_{2} \right) + \frac{1}{2} \left(\alpha^{3} c_{1} \sin^{2}_{\phi} c_{\mathbf{f}} \right) \right] \\ &-\frac{1}{\Delta} \left(\alpha^{2} c_{1} \sin^{2}_{\phi_{\mathbf{o}}} \right) \right] \left(\phi_{\mathbf{f}} \frac{c_{3}}{\alpha} + \delta \frac{c_{4}}{\beta} \right) \\ &-\frac{1}{\Delta} \left(\alpha^{2} c_{1} \sin^{2}_{\phi_{\mathbf{o}}} \right) \left(\beta^{2} c_{2} \sin^{2}_{\phi_{\mathbf{o}}} \right) \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{3} c_{1} \cos^{2}_{\phi} d_{\phi} \right] \end{aligned} \tag{32}$$ and $$\begin{split} & K_2 = \frac{\alpha}{\Delta} \left\{ \alpha \beta (\alpha - \beta) (\alpha \delta \sin \phi_f + \beta \phi_f \sin \phi_o) C_1 C_2 \right. \\ & + \left. \left(\phi_f \frac{C_3}{\alpha} + \delta \frac{C_4}{\beta} \right) (\alpha^3 C_1 \sin \phi_f - \beta^3 C_2 \sin \phi_o) \right. \\ & + \left. \left[\left(\alpha^3 C_1 \sin \phi_f - \beta^3 C_2 \sin \phi_o \right) \right. \right. \\ & + \left. \left. \left(\phi_f \cos \phi \right) \right\} \left(\phi_f \cos \phi \right) \left(\gamma C_1 + \frac{C_3}{\gamma} \right) \right. \right] d\phi \end{split}$$ $$- \left[\left(\alpha^{2}C_{1} \sin \phi_{f} - \beta^{2}C_{2} \sin \phi_{o} \right) \right] + \int_{\phi_{f}}^{\phi_{o}} \gamma^{2}C_{1} \cos \phi d\phi \int_{\phi_{f}}^{\phi_{o}} \gamma^{2}C_{1} d\phi + \left(\alpha^{2}\phi_{f}C_{1} + \delta\beta^{2}C_{2} \right) \int_{\phi_{f}}^{\phi_{o}} \gamma^{2}C_{1} \cos \phi d\phi + \left(\phi_{f}\alpha C_{1} + \delta\beta C_{2} + \phi_{f} \frac{C_{3}}{\alpha} + \delta \frac{C_{4}}{\beta} \right) \int_{\phi_{f}}^{\phi_{o}} \gamma^{3}C_{1} \cos \phi d\phi \right]$$ (33) so that $$(m_h/a_o) = K_1 + K_2 \cos \phi$$ (34) $0 \le \phi \le \phi_f$ $$(m_f/a_o) = K_1 + (\alpha - \gamma) + (\gamma/\alpha)K_2 \cos \varphi$$ $$\varphi_f \le \varphi \le \varphi_o$$ (35) Eqs. (32) and (33) are not yet amenable to a numerical determination. There remain within these equations terms of the type $$\alpha \int_{\phi_f}^{\phi_o} \gamma^2 C_{1_f} \cos \phi d\phi - \int_{\phi_f}^{\phi_o} \gamma^3 C_{1_f} \cos \phi d\phi$$. Because the magnitudes of α and γ are very close to unity, these two terms combine to produce a small-difference which cannot be eliminated until the geometry of the transition section is specified. Further discussion of terms of the type mentioned above is given in the Appendices. #### 4. GEOMETRY OF THE RING The ring under investigation is fabricated of three distinct sections, (Fig. 1). Because of the symmetry of the ring with respect to a vertical axis, this discussion will refer only to that part of the ring between $\phi=0$ and $\phi=\pi$ (see Fig. 1). Of the three segments of the ring, two are uniform. One uniform segment lies between $\phi=0$ and $\phi=\phi_f$, and the other between $\phi=\phi_0$ and $\phi=\pi$ (see Fig. 1 for definition of ϕ_f and ϕ_0). The transition section between the two uniform sections, however, must vary smoothly, i.e., the cross sectional areas are continuous at the two junctions but their derivatives are not. Furthermore, a choice of geometry for the transition section will determine whether or not the integrals in Eqs. (32) and (33) are easily integrable. There are, in Eqs. (32) and (33), five integrals which must be evaluated. These are $$I_1 = \int_{\varphi_f}^{\varphi_0} \gamma^2 c_{1_f} \cos \varphi d\varphi \qquad (37)$$ $$I_2 = \int_{\varphi_f}^{\varphi_o} \gamma^3 C_{l_f} \cos^2 \varphi d\varphi \qquad (38)$$ $$I_3 = \int_{\varphi_f}^{\varphi_o} \gamma^2 C_{1_f} d\varphi \tag{39}$$ $$I_4 = \int_{\phi_f}^{\phi_o} (\gamma C_{1_f} + \frac{C_{3_f}}{\gamma}) d\phi$$ (40) $$I_5 = \int_{\phi_f}^{\phi_O} \gamma^3 C_{1_f} \cos \phi d\phi \qquad (41)$$ The quantities γ , C_{1_f} , and C_{3_f} must be stipulated as functions of φ . The choice of these functions should be based on the following criteria: 1) the resulting shape of the transition section and whether it is physically reasonable, and 2) the degree of complexity of the integrals (37) to (41). With these criteria in mind the functions $$\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}}$$ $$\gamma = \alpha(\frac{\alpha}{\beta})$$ (42) $$C_{1_{f}} = C_{1}\left(\frac{C_{1}}{C_{2}}\right)^{f}$$ $$(43)$$ and $$C_{3_{f}} = C_{3} \left(\frac{C_{3}}{C_{4}}\right)^{\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}}}$$ $$(44)$$ where chosen. It should be realized that these functions satisfy the imposed continuity conditions, namely, $C_{3_f} = C_4$ $$\varphi = \varphi_{f}$$ $$\gamma = \alpha$$ $$C_{1_{f}} = C_{1}$$ $$C_{3_{f}} = C_{3}$$ $$\varphi = \varphi_{0}$$ $$\gamma = \beta$$ $$C_{1_{f}} = C_{2}$$ (45) With the functions (42) to (44) defined, the integrals I_1 to I_5 may now be evaluated. Substitution of Eqs. (42) to (44) into Eqs. (37) to (41) yields the following results: $$I_{1} = -\frac{(\varphi_{f}
- \varphi_{o}) \ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}}{(\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}})^{2} + (\varphi_{f} - \varphi_{o})^{2}} (\alpha^{2}C_{1} \cos \varphi_{f} - \beta^{2}C_{2} \cos \varphi_{o})$$ $$-\frac{(\varphi_{f} - \varphi_{o})^{2}}{(\ln^{2} \frac{\alpha^{2} C_{1}}{\beta^{2} C_{2}})^{2} + (\varphi_{f} - \varphi_{o})^{2}} (\alpha^{2} C_{1} \sin \varphi_{f} - \beta^{2} C_{2} \sin \varphi_{o})$$ (47) $$I_{2} = -\frac{1}{8} \frac{(\varphi_{f} - \varphi_{o}) \ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}}}{\frac{1}{4} (\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\varphi_{f} - \varphi_{o})^{2}} (\alpha^{3}C_{1} \cos 2\varphi_{f} - \beta^{3}C_{2} \cos 2\varphi_{o})$$ $$-\frac{1}{4} \frac{(\varphi_{f} - \varphi_{o})^{2}}{\frac{1}{4} (\ln \frac{\alpha^{3} C_{1}}{\beta^{3} C_{2}})^{2} + (\varphi_{f} - \varphi_{o})^{2}} (\alpha^{3} C_{1} \sin 2\varphi_{f} - \beta^{3} C_{2} \sin 2\varphi_{o})$$ $$-\frac{1}{2} \frac{(\varphi_{f} - \varphi_{o})}{\frac{\sigma^{3}C_{1}}{\beta^{3}C_{2}}} (\alpha^{3}C_{1} - \beta^{3}C_{2})$$ (48) $$I_{3} = -\frac{(\varphi_{f} - \varphi_{o})}{\alpha^{2} C_{1}} (\alpha^{2} C_{1} - \beta^{2} C_{2})$$ $$\ln \frac{\alpha^{2} C_{1}}{\beta^{2} C_{2}}$$ (49) $$I_{4} = -\frac{(\varphi_{f} - \varphi_{o})}{\ln \frac{\alpha C_{1}}{\beta C_{2}}} (\alpha C_{1} - \beta C_{2}) - \frac{(\varphi_{f} - \varphi_{o})}{\ln \frac{C_{3}/\alpha}{C_{4}/\beta}} (\frac{C_{3}}{\alpha} - \frac{C_{4}}{\beta})$$ (50) $$I_{5} = -\frac{(\varphi_{f} - \varphi_{o}) \ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\varphi_{f} - \varphi_{o})^{2}} (\alpha^{3}C_{1} \cos \varphi_{f} - \beta^{3}C_{2} \cos \varphi_{o})$$ $$-\frac{(\varphi_{f}-\varphi_{o})^{2}}{(\ln\frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2}+(\varphi_{f}-\varphi_{o})^{2}}(\alpha^{3}C_{1}\sin\varphi_{f}-\beta^{3}C_{2}\sin\varphi_{o}) \quad (51)$$ #### 5. BENDING STRESSES In order to obtain the bending stresses in the ring the following procedure should be pursued: (a) Obtain a by solving for the interaction load between an infinitely long hydrostatically loaded cylinder and a single uniform reinforcing ring (or any other approximation of Ref. [4]); $$= \frac{2.740(a/h)^{-1/2}}{1.610 (a/h)^{-3/2} \frac{c_1^{\circ} c_3^{\circ}}{c_1^{\circ} + c_3^{\circ}} + 1}$$ (52) where the uniform ring is selected such that $$c_{1}^{o} = \frac{1}{2} (c_{1} + c_{2})$$ $$c_{3}^{o} = \frac{1}{2} (c_{3} + c_{4})$$ (53) - (b) Evaluate integrals ${ m I}_1$ to ${ m I}_5$ from Eqs. (47) to (51). - (c) Evaluate the quantity $I_1[a_1I_1-I_5]$ from Eqs. (A8), (A11) and (A12) (See Appendix). Evaluate the quantity $I_5 \int_{\phi_f}^{\phi_o} \gamma C_{1f} d\phi I_1I_3$ from Eqs. (A8), (A11), (A13), (A14), (A15). Evaluate the quantity $\alpha \gamma$ from Eqs. (B10) and (B11). - (d) Utilizing the results of (a), (b) and (c), above, evaluate Eqs. (31) to (36). (e) Obtain the bending stress distribution in the ring at the radius a (the outer radius) from the relations $$\frac{\left(\frac{d_{\phi}}{p}\right)_{b}}{p} \left| \begin{array}{c} \text{Outer Radius} \end{array} \right| = \frac{\left(1-a\right)}{a} C_{1} m_{h}$$ $$0 \le \phi \le \phi_{f}$$ $$\frac{\left(\sigma_{\phi}\right)_{b}}{p} \left| \begin{array}{c} \left(1-\gamma\right) \\ \text{Outer Radius} \end{array} \right| = \frac{\left(1-\gamma\right)}{\gamma} C_{1} m_{f}$$ $$\varphi_{f} \leq \varphi \leq \varphi_{o} \qquad (54)$$ and $$\frac{\left(\sigma_{\phi}\right)_{b}}{p} \left| \text{Outer Radius} \right| = \frac{\left(1-\beta\right)}{\beta} C_{2} m_{H}$$ $$\sigma_{o} \leq \phi \leq \pi$$ #### 6. RESULTS In order to judge the effect of the transition section in reducing the maximum bending stress in the ring, a single set of parameters describing the geometry of the ring was chosen. However, many different lengths of the transition section were considered. The particular set of parameters which determine the geometry of the ring (an inner ring) are $$C_1 = 9.983(10^7)$$ $C_2 = 5.467(10^7)$ $$c_3 = 2.750(10^3)$$ $c_4 = 2.250(10^3)$ $$\alpha = 0.9909091$$ $\beta = 0.9888889$ and those which determine the length of the transition section of the rings are $$\varphi_0 = 90^\circ$$ $$\varphi_f = 90^\circ$$, 80° , 70° , 60° , 45° , 30° , 10° , 0° . The results obtained from the procedure outlined in section 5 are presented in the form of curves in Figs. 5 and 6. The maximum bending stress distributions are plotted in Fig. 5 for different lengths of transition section. In addition to the stress distribution curves, two additional curves are presented in Fig. 6. They represent the reduction in the peak stresses, non-dimensionalized with respect to the corresponding peak stress with no transition section, versus the length of transition section. The solid curve represents the stress reduction at the foot of the transition section ($\phi = \phi_f$). The other curve represents the stress reduction at the head of the transition section ($\phi = \phi_f$). #### CONCLUSIONS The primary purpose of the present analysis has been to determine the reduction in the maximum bending stress caused by introducing a smooth transition between two uniform but different sections of a shell reinforcing ring. The non-uniform ring without the discontinuity has previously been analyzed [1]. In these previous analyses the bending stress at the discontinuity was found to be of the order of one third the membrane stress because of the eccentricity at the discontinuity of the centroidal radius of the ring. In Fig. 5 the bending stresses in the ring without any transition section correspond to the φ_0 - φ_f = 0° curve. The effect of the length of the transition section $(\phi_0 - \phi_f)$ is indicated in both Fig. 5, where the stress distributions are plotted for the various transition section lengths, and in Fig. 6, where the stress reduction is plotted vs. the length of transition section. These curves show a reduction in the maximum bending stress of approximately 60% in the less rigid section and 50% in the more rigid section of the ring. For the two uniform ring sections the greatest reduction in the maximum bending stress, however, occurs at different values of $\phi_0 - \phi_f$. Thus, the maximum reduction in the bending stress occurs in the less rigid section when $\phi_0 - \phi_f \approx 60^\circ$; the corresponding maximum stress reduction in the more rigid section occurs when $\phi_0 - \phi_f = 90^\circ$. The reduction in the bending stress reaches a maximum value in the less rigid section because the section is becoming shorter and effectively stiffer. This effect becomes significant after $\phi_0 - \phi_f \approx 60^\circ$. For $\phi_0 - \phi_f > 60^\circ$, the bending stress at the foot of the transition section is greater than its corresponding value for $\phi_0 - \phi_f \approx 60^\circ$. The results indicate that a substantial stress reduction can be obtained by introducing a transition section between the two uniform sections of the ring. They further indicate that there is an optimum length of transition section which is suggested by a maximum reduction in the bending stress. #### REFERENCES - 1. Bodner, Sol R.: Stresses in Circular Cylindrical Shells Reinforced by Ring Frames of Non-Uniform Cross Section. PIBAL Report No. 289, April 1955, Polytechnic Institute of Brooklyn, Department of Aerospace Engineering and Applied Mechanics. - 2. Pohle, Frederick V., and Nardo, S.V.: Stresses in Laterally Loaded Circular Cylindrical Shell Reinforced with Equally Spaced Non-Uniform Rings. PIBAL Report No. 269, July 1955, Polytechnic Institute of Brooklyn, Department of Aerospace Engineering and Applied Mechanics. - 3. Allentuch, Arnold and Pohle, Frederick V.: Bending Moments in Non-Uniform Reinforcing Rings of Hydrostatically Loaded Circular Cylindrical Shells. PIBAL Report No. 414, January 1958, Polytechnic Institute of Brooklyn, Department of Aerospace Engineering and Applied Mechanics. - 4. Allentuch, Arnold and Kempner, Joseph: Stresses in Eccentric Non-Uniform Reinforcing Rings of Pressurized Circular Cylin-drical Shells. PIBAL Report No. 555, March 1961, Polytechnic Institute of Brooklyn, Department of Aerospace Engineering and Applied Mechanics. - 5. Allentuch, Arnold and Kempner, Joseph: <u>Pressurized Reinforced Circular Cylindrical Shells--Stress in Eccentric Non-Uniform Rings with Two Uniform Sections of Unequal Length</u>. PIBAL Report No. 556, October 1961, Polytechnic Institute of Brooklyn, Department of Aerospace Engineering and Applied Mechanics. #### **APPENDIX** Equations (32) and (33) contain expressions of the type $$I_1[\alpha I_1 - I_5] = I_1 \alpha \int_{\phi_f}^{\phi_0} \gamma^2 C_{1_f} \cos \phi d\phi - I_1 \int_{\phi_f}^{\phi_0} \gamma^3 C_{1_f} \cos \phi d\phi$$ (A1) and $$I_{5} \int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{\mathbf{C}}_{1_{\mathbf{f}}} d\phi - I_{1}I_{3} = \left[\int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{3}C_{1_{\mathbf{f}}} \cos \phi d\phi\right] \left[\int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{\mathbf{C}}_{1_{\mathbf{f}}} d\phi\right]$$ $$- \left[\int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{2}C_{1_{\mathbf{f}}} \cos \phi d\phi\right] \left[\int_{\phi_{\mathbf{f}}}^{\phi_{\mathbf{o}}} \gamma^{2}C_{1_{\mathbf{f}}} d\phi\right] \tag{A2}$$ Because the magnitudes of α and γ are close to unity, Eqs. (Al) and (A2) represent differences of nearly equal quantities. These differences, which could lead to the loss of significant figures in a numerical analysis, are eliminated by appropriate expansions. If use is made of Eqs. (37) and (41), Eq. (A1) becomes $$\alpha I_1^2 - I_1 I_5 =$$ $$I_{1} \left\{ -(\phi_{f} - \phi_{o}) \left[\frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}} + (\phi_{f} - \phi_{o})^{2} \right] \right\} \left(\alpha^{2}C_{1} \cos \phi_{f} - \beta^{2}C_{2} \cos \phi_{o} \right)$$ $$-\frac{\ln
\frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}} (\alpha^{3}C_{1} \cos \phi_{f} - \beta^{3}C_{2} \cos \phi_{o})]$$ $$-(\phi_{\rm f} - \phi_{\rm o})^2 \left[\frac{\alpha}{(2c_1)^2 + (\phi_{\rm f} - \phi_{\rm o})^2} (\alpha^2 c_1 \sin \phi_{\rm f} - \beta^2 c_2 \sin \phi_{\rm o}) \right]$$ $$-\frac{1}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}}$$ (Ala) It is evident that the expressions which will produce the small differences are those within the square brackets. Consider then the term $$\frac{\alpha \ln \frac{\sigma^{2}C_{1}}{\beta^{2}C_{2}}}{(\ln \frac{\sigma^{2}C_{1}}{\beta^{2}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}}$$ (2c) $(\alpha^{2}C_{1} \cos \phi_{f} - \beta^{2}C_{2} \cos \phi_{o})$ $$-\frac{\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}} (\alpha^{3}C_{1} \cos \phi_{f} - \beta^{3}C_{2} \cos \phi_{o})$$ (A3) Expression (A3) may be rewritten $$\frac{\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}} \frac{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}} \frac{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}}{(\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}} \frac{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}}{\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}}}$$ $$- \beta^{2}C_{2} \cos \phi_{0})\alpha - (\alpha^{3}C_{1} \cos \phi_{f} - \beta^{3}C_{2} \cos \phi_{0}) \} \quad (A3a)$$ Let $$r_{1} = \frac{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}}{\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}}}$$ (A4) Now expression (A3a) becomes upon substitution of (A4) $$\frac{\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}} \frac{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}} \frac{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2}}$$ $$-\alpha\beta^{2} C_{2} \cos \phi_{0}) - (\alpha^{3}C_{1} \cos \phi_{f} - \beta^{3}C_{2} \cos \phi_{0}) \}$$ (A5) It can be seen that if α and β are quantities whose value are close to unity, r_1 is a quantity of order of magnitude unity, and can be written $$\mathbf{r}_1 = 1 + \varepsilon_1 \tag{A6}$$ where ϵ_1 is small compared to unity. Expression (A5) can again be rewritten as $$\frac{\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} + (\phi_{f} - \phi_{o})^{2}} \left\{ \frac{1 + \epsilon_{1}}{1 + \frac{\epsilon_{1}(2 + \epsilon_{1})}{(\phi_{f} - \phi_{o})^{2}}} + (\alpha^{3}C_{1} \cos \phi_{1})^{2} + (\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} \right\}$$ $$-\alpha\beta^{2} C_{2} \cos \varphi_{0}) - (\alpha^{3}C_{1} \cos \varphi_{f} - \beta^{3} C_{2} \cos \varphi_{0})$$ (A7) Let $$G = 1 + \frac{(\varphi_{f} - \varphi_{o})^{2}}{(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2}}$$ (A9) and from expression (A7) let us expand $$\frac{1+\varepsilon_1}{1+\frac{\varepsilon_1(2+\varepsilon_1)}{G}} = (1+\varepsilon_1)[1-\frac{\varepsilon_1(2+\varepsilon_1)}{G}+\frac{\varepsilon_1^2(2+\varepsilon_1)^2}{G^2}$$ $$-\frac{\varepsilon_1^{3}(2+\varepsilon_1)^3}{G^3}+\cdots] \tag{A9}$$ After multiplying, (A9) becomes $$\frac{\frac{1+\varepsilon_1}{\varepsilon_1(2+\varepsilon_1)}}{1+\frac{\varepsilon_1(2+\varepsilon_1)}{G}} = 1+\varepsilon_1(1-\frac{2+\varepsilon_1}{G})\left[1-\frac{\varepsilon_1(2+\varepsilon_1)}{G}+\frac{\varepsilon_1^2(2+\varepsilon_1)^2}{G^2}-\ldots\right]$$ (A9a) In order to evaluate ε_1 let us write Eq. (A6) and (A4) in the following form and expand: $$r_{1} = (1 + \epsilon_{1}) = \frac{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}}{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}} + \ln \frac{\alpha}{\beta}} = \frac{1}{1 + \frac{\ln \frac{\alpha}{\beta}}{\alpha^{2}C_{1}}} \ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}$$ $$= 1 - \frac{\ln \frac{\alpha}{\beta}}{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}} + (\frac{\ln \frac{\alpha}{\beta}}{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}})^{2} - (\frac{\ln \frac{\alpha}{\beta}}{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}})^{3} + \cdots$$ (A10) $$\varepsilon_{1} = -\frac{\ln \frac{\alpha}{\beta}}{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}} \left[1 - \frac{\ln \frac{\alpha}{\beta}}{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}} + (\frac{\ln \frac{\alpha}{\beta}}{\ln \frac{\alpha^{2}C_{1}}{\beta^{2}C_{2}}})^{2} - \cdots\right]$$ (A11) If we now substitute (A9) into (A7) and (A7) into (Ala), the following expression results: $$I_{1}[\alpha I_{1} - I_{5}] = \frac{-I_{1}(\phi_{f} - \phi_{o})}{G \ln \frac{\sigma^{3}C_{1}}{\beta^{3}C_{2}}} \{\alpha \varepsilon_{1}(1 - \frac{2 + \varepsilon_{1}}{G})[1$$ $$-\frac{\varepsilon_1(2+\varepsilon_1)}{G}+\frac{\varepsilon_1^2(2+\varepsilon_1)^2}{G^2}-\cdots](\alpha^2C_1\cos\varphi_f)$$ $$-\frac{g^{2} C_{2} \cos \varphi_{0}}{-\frac{I_{1}(\varphi_{f} - \varphi_{0})^{2}}{G(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2}}} \left\{-\frac{\alpha \varepsilon_{1}(2 + \varepsilon_{1})}{G} \left[1 - \frac{\varepsilon_{1}(2 + \varepsilon_{1})}{G} + \frac{\varepsilon_{1}^{2}(2 + \varepsilon_{1})^{2}}{G^{2}} - \cdots\right] - \beta^{2}(\alpha - \beta)C_{2} \sin \varphi_{0}\right\}$$ (A12) where ϵ_1 is given by (All). The expression (A2) may be treated in a similar manner to obtain $$I_{5} \int_{\phi_{f}}^{\phi_{o}} \gamma C_{1_{f}} d\phi - I_{1}I_{3} = -\frac{(\phi_{f} - \phi_{o})^{2}}{G \ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}} \ln \frac{\alpha C_{1}}{\beta C_{2}}} \left\{ \left[\epsilon_{2} - \frac{\epsilon_{1}(2 + \epsilon_{1})}{G} \right] \right]$$ $$1 - \frac{\varepsilon_{1}(2 + \varepsilon_{1})}{G} + \frac{\varepsilon_{1}^{2}(2 + \varepsilon_{1})^{2}}{G^{2}} - \cdots](\alpha^{2}C_{1} \cos \varphi_{f} - \beta^{2} C_{2} \cos \varphi_{o})(\alpha^{2}C_{1} - \beta^{2}C_{2}) + \alpha\beta(\alpha - \beta)(\alpha \cos \varphi_{f} - \beta \cos \varphi_{o})C_{1}C_{2}$$ $$\frac{-(\varphi_{f} - \varphi_{o})^{3}}{G(\ln \frac{\alpha^{3}C_{1}}{\beta^{3}C_{2}})^{2} \ln \frac{\alpha^{C_{1}}}{\beta^{C_{2}}}} \{ [\epsilon_{3} - \frac{\epsilon_{1}(2 + \epsilon_{1})}{G}] [1 - \frac{\epsilon_{1}(2 + \epsilon_{1})}{G}] \}$$ $$+ \frac{{\varepsilon_1}^2 (2 + {\varepsilon_1})^2}{g^2} - \cdots]({\alpha}^2 c_1 \sin \phi_f - {\beta}^2 c_2 \sin \phi_o)({\alpha}^2 c_1 - {\beta}^2 c_2).$$ + $$\alpha\beta(\alpha - \beta)(\alpha \sin \phi_f - \beta \sin \phi_o)C_1C_2$$ (A13) where $\boldsymbol{\epsilon}_1$ is given by (All) and $$\varepsilon_{2} = \frac{-2 \ln \frac{\alpha}{\beta}}{\ln \frac{\alpha C_{1}}{\beta C_{2}}} \left[1 - \left(\frac{2 \ln \frac{\alpha}{\beta}}{\ln \frac{\alpha C_{1}}{\beta C_{2}}}\right) + \left(\frac{2 \ln \frac{\alpha}{\beta}}{\ln \frac{\alpha C_{1}}{\beta C_{2}}}\right)^{2} - \cdots\right]$$ (A14) $$\varepsilon_{3} = -\left(\frac{\ln\frac{\alpha}{\beta}}{\ln\frac{\alpha C_{1}}{\beta C_{2}}}\right) \left[1 - \left(\frac{\ln\frac{\alpha}{\beta}}{\ln\frac{\alpha C_{1}}{\beta C_{2}}}\right) + \left(\frac{\ln\frac{\alpha}{\beta}}{\ln\frac{\alpha C_{1}}{\beta C_{2}}}\right)^{2} - \cdots\right]$$ (A15) ### APPENDIX B Equation (35) contains the term $(\alpha - \gamma)$. If α and γ are quantities of the order of magnitude of unity, the calculation of this term involves a difference of nearly equal quantities. The resulting loss of significant figures can be eliminated by suitable expansions. If use is made of Eq. (42), the quantity $(\alpha - \gamma)$ can be written as follows: $$\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}}$$ $$\alpha - \gamma = \alpha \left[1 - \left(\frac{\alpha}{\beta}\right)\right] \qquad (B1)$$ Since α and β are of order unity, we may write $$\frac{\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}}}{(\frac{\alpha}{\beta})} = (1 + \varepsilon_{4})^{\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}}}$$ (B2) where $$\varepsilon < < 1$$ (B3) If the binomial expansion is used to express the right-hand side of Eq. (B2) in powers of ε_4 , the following results: $$(\frac{\alpha}{\beta})^{\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}}} = 1 + \frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} \varepsilon_{4} + \frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} \left[\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} - 1\right] \frac{1}{2!} \varepsilon_{4}^{2}$$ $$+ \frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} \left[\frac{\varphi - \varphi_{f}}{\varphi_{f} + \varphi_{o}} - 1\right] \left[\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} - 2\right] \frac{1}{3!} \varepsilon_{4}^{3} + \cdots (B4)$$ In order to find an expression for ε_4 let us write [see Eq. (7)] $$\left(\frac{\alpha}{\beta}\right) = \frac{a_h}{a_H} \tag{B5}$$ This can be restated in terms of the thicknesses h and H of the two uniform sectors of the ring. Thus, $$\frac{\alpha}{\beta} = \frac{a - (h/2)}{a - (H/2)} = \frac{2(a/H)}{2(a/H)} \frac{2(a/h) - 1}{2(a/H) - 1}$$ (B6) Further algebraic manipulation leads to $$\frac{\alpha}{\beta} = \frac{1 - (h/2a)}{1 - (H/2a)} \tag{B7}$$ If the denominator is expanded, we obtain $$(1 - \frac{H}{2a})^{-1} = 1 + (\frac{H}{2a}) + (\frac{H}{2a})^2 + (\frac{H}{2a})^3 + \cdots$$ (B8) Combining Eqs. (B7) and (B8) gives $$\frac{\alpha}{\beta} = 1 + \frac{1}{2} \left(\frac{H}{a} - \frac{h}{a} \right) \sum_{k=1}^{\infty} \left(\frac{H}{a} \right)^{k-1} \frac{1}{2^{k-1}}$$ (B9) However, if Eq. (B9) is compared with Eq. (B2), we obtain the following expression: $$\varepsilon_4 = \frac{1}{2} \left(\frac{H}{a} - \frac{h}{a} \right) \sum_{k=1}^{\infty} \left(\frac{H}{a} \right)^{k-1} \frac{1}{2^{k-1}}$$ (B10) Finally, from Eqs. (B1) and (B4) we can write the expression for $(\alpha - \gamma)$ in the following
form: $$\alpha - \gamma = -\alpha \left(\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}}\right) \varepsilon_{4} \left[1 + \left(\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} - 1\right) \frac{\varepsilon_{4}}{2}\right]$$ $$+ \left(\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} - 1\right) \left(\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} - 2\right) \frac{\varepsilon_{4}^{2}}{6}$$ $$+ \left(\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} - 1\right) \left(\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} - 2\right) \left(\frac{\varphi - \varphi_{f}}{\varphi_{f} - \varphi_{o}} - 3\right) \frac{\varepsilon_{4}^{3}}{24} + \cdots \right] (B11)$$ Therefore, from Eqs. (BlO) and (Bll) we can calculate ($\alpha - \gamma$) without the loss of significant figures due to differences of nearly equal quantities. ## FIG. I RING WITH TRANSITION SECTION FIG. 2 FREE BODY DIAGRAM OF A SEGMENT OF THE RING, $0 \le \varphi \le \varphi_f$ FIG. 3 FREE BODY DIAGRAM OF A SEGMENT OF THE RING, $\varphi_i \leq \varphi \leq \varphi_0$ FIG. 4 FREE BODY DIAGRAM OF A SEGMENT OF THE RING , $\varphi_0 \leq \varphi \leq \pi$ 40-4t-200 40-4-10° 201 FIG. 6 STRESS REDUCTION AT $\wp = \wp_f$ AND $\wp = \wp_o$ VS LENGTH OF TRANSITION SECTION # Distribution List for Unclassified # Technical and Final Reports Issued Under Office of Naval Research - Contract Norm 839 (14) ### I. Administrative, Reference and Lisson Activities of ONR | Chief of Naval Research Department of the Navy Washington 25, D. C. Attn: Code 432 (1) Code 438 (1) Code 439 (2) | Director Office of Naval Research Branch Office 207 West 24th Street New York 11, New York (2) | |---|---| | Director, Naval Research Laboratory Washington 25, D. C. Attn: Tech. Info. Officer (6) | Commanding Officer Office of Naval Research Navy # 100 Fleet Post Office New York, New York (25) | | Technical Library (1) Mechanics Division (1) | Armed Services Tech. Info. Agency Document Service Center Arlington Hall Station | | II. Department of Defense and Other In | | | (A) General Research & Development Board Department of Defense Pentagon Building Washington 25, D. C. Attn: Library Code 3D-1075 (1) | (B) Army Chief of Staff Department of the Army Research & Development Division Washington 25, D. C. Attn: Chief of Res. & Dev. (1) | | Chief Defense Atomic Support Agency Washington 25, D. C. Attn: Document Library Branch (1) | | | Office of the Chief of Engineers | | Office of the Chief of Ordnance | | |---|-------------|--|------------| | Asst. Chief for Works | | Office of Ordnance Research | | | Department of the Army | | Department of the Army | | | Bldg. T-7, Gravelly Point | | The Pentagon Annex # 2 | | | Washington 25, D. C. | | Washington 25, D. C. | | | Attn: Strucutral Branch | | Attn: ORDTB-PS | (1) | | (R. L. Bloor) | (1) | | (-) | | (| \- / | Ballistics Research Laboratory | | | Engineering Research and | | Aberdeen Proving Ground | | | Development Laboratory | | Aberdeen, Maryland | | | Fort Belvoir, Virginia | | Attri: Dr. C. W. Lampson | (1) | | Attn: Structures Branch | (1) | Accit; Dr. C. W. Dampson | (+) | | noon; Jacobarob Dianon | | (C) MATE | | | Office of the Chief of Engineers | | (C) <u>NAVY</u> | | | Asst. Chief for Military Const. | | Obda O ao Mara 3. Our maketana | | | | | Chief of Naval Operations | | | Department of the Army | | Department of the Navy | | | Bldg. T-7, Gravelly Point | | Hashington 25, D. C. | | | Washington 25, D. C. | | Attn: OP-31 | (1) | | Attn: Structures Branch (ENGEA) or | • | OP-363 | (1) | | Protective Construction | | | | | Branch (ENGEB) | (2) | Chief Bureau of Ships | | | | | Department of the Navy | | | Office of the Chief of Engineers | | Washington 25, D. C. | • | | Asst. Chief for Military Operations | | Attn: Director of Research | (2) | | Department of the Army | | Code 423 | (2)
(1) | | Bldg. T-7, Gravelly Point | | Code 442 | ίīs | | Washington 25, D. C. | | Code 421 | (1)
(1) | | Attn: Structures Development | | 6040 4 44 | () | | Branch (W. Woollard) | (1) | Commanding Officer and Director | | | (11) | \- / | David Taylor Model Basin | | | U. S. Army Waterways Experiment Stat | ti on | | | | P. O. Box 631 | · | Attn: Code 140 | (1) | | Halls Ferry Road | | Code 600 | (1) | | | | | | | Vicksburg, Mississippi
Attn: Col. H. J. Skidmore | (1) | Code 700 | (1) | | Accus Cor. u. a. orranole | (1) | | (1)
(1) | | Mha Cammandina Camana | | Code 725 | (1) | | The Commanding General | | Code 731 | (1) | | Sandia Base | | Code 740 | (2) | | P. O. Box 5100 | /- \ | | | | Alburquerque, New Mexico | (1) | Commanding Officer | | | Attn: Col. Canterbury | | Underwater Explosion Research Divisi | on | | | | Code 290 | | | Operations Research Officer | | Norfolk Naval Shipyard | • | | Department of the Army | | Portsmouth, Virginia | (1) | | Ft. Lesley J. McNair | | • | | | Washington 25, D. C. | | Commander | | | Attn: Howard Brackney | (1) | Portsmouth Naval Shipyard | | | • | | Portsmouth, N. H. | | | Chief or Bureau of Ordnance | | Attn: Design Division | (1) | | Department of the Navy | ٠ | and the same of th | \-/ | | Washington 25, D. C. | | Director, Materials Laboratory | | | Attn: Ad-3, Technical Library | (1) | New York Naval Shipyard | | | | | | | | Rec., P. H. Girouard | (1) | Brooklyn 1, New York | | ### Supplementary Distribution List (1) Port Hueneme, California | Professor Lynn Beedle
Fritz Engineering Laboratory
Lehigh University
Bethlehem, Pennsylvania | (1) | Professor Hans Bleich Dept. of Civil Engineering Columbia University Broadway at 117th Street New York 27, New York | (1) | |--|-----|---|-----| | Professor R. L. Bisplinghoff
Dept. of Aero. Eng.
Massachusetts Inst. of Tech.
Cambridge 39, Massachusetts | (1) | Professor B. A. Boley
Dept. of Civil Eng.
Columbia University
New York 27, New York | (1) | ### Supplementary Distribution List (Cont.) | Professor P. Chiarulli
Technology Center
Illinois Institute of Technology
Chicago 16, Illinois | (1) | Dr. J. H. Hollomon
General Electric Research Labs.
1 River Road
Schenectady, New York | (1) | |---|---------------|--|-------------------| | Professor R. J. Dolan | | Dept. of Applied Mechanics | | | Department of Theo. & App. Mechani | ics | Johns Hopkins University | | | University of Illinois | , | Baltimore, Maryland | (1) | | Urbana, Illinois | (1) | • | | | | • • • | Professor L. S. Jacobsen | | | Professor LLoyd Donnell | | Dept. of Mechanical Engineering | | | Department of Mechanics | | Stanford University | | | Illinois Institute of Technology | | Stanford, California | (1) | | Technology Center | | | | | Chicago 16, Illinois | (1) | Professor J. Kempner | | | | | Department of Aerospace Engineeri | ng | | Mr. Martin Goland | | & Applied Mechanics | | | Southwest Research Institute | | Polytechnic Institute of Brooklyn | 2. | | 8500 Culebra Road | | 333 Jay Street | 4- 1 | | San Antonio 6, Texas | (1) | Brooklyn 1, New York | (1) | | Dr. J. N. Goodier | | Professor George Lee | | | School of Engineering | | Dept. of Aero. Engineering | | | Stanford University | | Rensselaer Polytechnic Institute | | | Stanford,
California | (1) | Troy, New York | (1) | | Stant Otto, Calliania | (+) | 11 0) 9 11011 10111 | \- / | | Professor R. M. Hermes | | Professor Glen Murphy | | | College of Engineering | | Dept. of Theo. & Appl. Mechanics | | | University of Santa Clara | | Iowa State College | /= \ | | Santa Clara, California | (1) | Ames, Iowa | (1) | | Professor R. J. Hansen | | Professor William A. Nash | | | Dept. of Civil & Sanitary Eng. | | University of Florida | | | Mass. Institute of Technology | | Gainesville, Florida | (1) | | Cambridge 39, Massachusetts | (1) | , and a second | ` ' | | Campringe 33, Massachuse ons | (-) | Professor N. M. Newmark | | | Professor M. Hetenyi | | Dept. of Civil Engineering | | | | | University of Illinois | | | Walter P. Murphy, Professor | | Urbana, Illinois | (1) | | Northwestern University | (1) | or pour, a manufacture | \ <i>\</i> | | Evanston, Illinois | (-) | Professor Jesse Ormondroyd | | | The World Hood | | University of Michigan | | | Dr. N. J. Hoff, Head | ni no | Ann Arbor, Michigan | (1) | | Division of Aeronautical Engineer | THE | Hill W Dor't Hannebarr | \- / | | Stanford University | (1) | Professor Eugene J. Brunelle, Jr | | | Stanford, California | (-) | Dept. of Aero. Engineering | • | | Dr. Bernard Shaffer | | Princeton University | | | Dept. of Mechanical Engineering | | Princeton, New Jersey | (1) | | New York University | | | ,-, | | | | Dr. D. O. Brush | | | University Heights | (1) | Structures Department 53-13 | | | New York 53, New York | \ - -/ | Lockheed Aircraft Corporation | | | | | Missile Systems Division | | | | | Sunnyvale, California | (1) | | | | | ·-/ | | Professor Aris Phillips Winchseter Hall 15 Prospect Street Yale University | (2) | Professor E. Sternberg Division of Applied Mathematics Brown University Providence 12, Rhode Island | (1) | |---|--------------------|---|--------| | New Haven, Connecticut Dr. W. Prager, Chairman Graduate Div. of App. Math. | (1) | Professor F. K. Teichman
Department of Aero. Engineering
New York University | | | Brown University
Providence 12, Rhode Island | (1) | University Heights
Bronx, New York | (1) | | Mr. Ivan Rattinger
Space Technology Labs. Inc.
5730 Arbor Vitae | 40. 3 | Professor A. C. Eringen
Department of Aero. Engineering
Purdue University | (7) | | Los Angeles 45, California | (1) | Lafayette, Indiana | (1) | | Professor E. Reissner Department of Mathematics Mass. Institute of Technology | | Professor Paul Lieber
Geology Department
University of California | | | Cambridge, Massachusetts | (1) | Berkeley 4, California | (1) | | Mr. M. A. Sadowski
Department of Pechanics
Rennselaer Polytechnic Institute | | Mr. K. H. Koopman, Secretary
Welding Research Council of
the Engineering Foundation | | | Troy, New York | (1) | 29 West 39th Street | (2) | | Du James Chang | | New York 18, New York | (2) | | Dr. James Sheng
Research Staff | | Professor Walter T. Daniels | | | Mail No. J-3033 | | School of Engineering and Archite | ecture | | The Martin Company | /3.\ | Howard University | (1) | | Baltimore 3, Maryland | (1) | Washington 1, D. C. | (1) | | Professor J. E. Stallmeyer | | Commander | | | Talbot Laboratory | | Wright Air Development Center | | | Dept. of Civil Engineering | | Wright-Patterson Air Force Base | | | University of Illinois | / - 3.5 | Dayton, Chio | /11 | | Urbana, Illinois | (1) | Attn: Dynamics Branch | (1) | | Professor Micholas Perrone | | Commander | | | Engineering Sciences Department | | WADD | | | Pratt Institute | / 3.\ | Wright-Patterson Air Force Base | | | Brooklyn 5, New York | (1) | Chio
Attn: VMRC | (7) | | Commanding Officer | | Attn: VATRC
VATRMDS | 757 | | Commanding Officer USNNOEU | | WERNDD | λīί | | Kirtland Air Force Base | | ** (a based and | \-/ | | Albuquerque, New Mexico | | Professor W. J. Hall | | | Attn: Code 20 | | Department of Civil Engineering | | | (Attn: Dr. J.N. Brennan) | (1) | University of Illinois | /n \ | | n o | | Urbana, Illinois | (1) | | Professor J. E. Cermak Department of Civil Engineering | | Professor R. P. Harrington, Head | | | Colorado State University | | Dept. of Aero. Engineering | | | Fort Collins, Colorado | (1) | University of Cincinnati | | | | • • | Cincinnati 21, Chio | (1) |